Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 115(3): e22103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517449

RESUMO

In Korea, there are two maggot species in the Delia genus that commonly infest the roots and stems of the Welsh onion, thus causing serious economic damage on the crop at the seedling stage. In this study, the seedcorn maggot (Delia platura) was detected in onion fields in two different localities in Korea. After overwintering, maggot infestations occurred throughout the entire growing seasons from transplantation to harvest, but their specific patterns of occurrence varied in the two localities examined. Entomopathogenic fungi induced significant virulence against the maggot larvae, in which a strain of Beauveria bassiana was effective, though it exhibited limited mortality in its insecticidal activity. To enhance this insecticidal activity, a culture broth from an entomopathogenic bacterium, Photorhabdus temperata temperata (Ptt), was added to B. bassiana treatment. The addition of Ptt broth significantly increased the insecticidal activity of B. bassiana in a dose-dependent manner. To elucidate this enhancement in insecticidal activity, the immunosuppressive activity of Ptt broth was assessed by identifying the immune responses of the seedcorn maggots. The seedcorn maggots possessed at least three different hemocytes with plasmatocytes, crystal cells, and lamellocytes. These hemocytes exhibited nodule formation in response to the fungal infection. In addition to the cellular immunity, the maggots exhibited inducible expressions of antimicrobial peptide (AMP) genes such as cecropin and defensin. The addition of Ptt broth suppressed the nodule formation and the AMP expressions in response to the fungal infection. Altogether, this study demonstrated the innate immune responses in a non-model insect, D. platura, along with the application of immunosuppression to develop a highly efficient biological control by enhancing the virulence of B. bassiana.


Assuntos
Beauveria , Inseticidas , Micoses , Photorhabdus , Animais , Larva/microbiologia , Virulência , Beauveria/fisiologia , Imunidade
2.
Insect Biochem Mol Biol ; 168: 104104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494144

RESUMO

Upon immune challenge, recognition signals trigger insect immunity to remove the pathogens through cellular and humoral responses. Various immune mediators propagate the immune signals to nearby tissues, in which polyunsaturated fatty acid (PUFA) derivatives play crucial roles. However, little was known on how the insects terminate the activated immune responses after pathogen neutralization. Interestingly, C20 PUFA was detected at the early infection stage and later C18 PUFAs were induced in a lepidopteran insect, Spodoptera exigua. This study showed the role of epoxyoctadecamonoenoic acids (EpOMEs) in the immune resolution at the late infection stage to quench the excessive and unnecessary immune responses. In contrast, dihydroxy-octadecamonoenoates (DiHOMEs) were the hydrolyzed and inactive forms of EpOMEs. The hydrolysis is catalyzed by soluble epoxide hydrolase (sEH). Inhibitors specific to sEH mimicked the immunosuppression induced by EpOMEs. Furthermore, the inhibitor treatments significantly enhanced the bacterial virulence of Bacillus thuringiensis against S. exigua. This study proposes a negative control of the immune responses using EpOME/DiHOME in insects.


Assuntos
Ácidos Graxos Insaturados , Insetos , Animais , Spodoptera
3.
J Invertebr Pathol ; 204: 108095, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38499284

RESUMO

Epoxyoctadecamonoenoic acids (EpOMEs) are produced from linoleic acid by a cytochrome P450 monooxygenase (CYP) and play a crucial role in terminating excessive and unnecessary immune responses during the late infection stage in insects. This suggests that an increase in the EpOME level may enhance the virulence of insect pathogens against pests. This study tested this hypothesis using a specific inhibitor against soluble epoxide hydrolase (sEH) to degrade EpOMEs, which leads to elevated endogenous EpOME levels. A baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), was used to infect three different lepidopteran insects (Spodoptera exigua, Maruca vitrata, and Plutella xylostella) by oral feeding or hemocoelic injection treatments. Within one hour, the viral infection induced the expression of three different phospholipase A2 (PLA2) genes and, after 12 h, up-regulated the expressions of CYP and sEH genes in Spodopera exigua. As expected, AcMNPV virulence was suppressed by the addition of arachidonic acid (a catalytic product of PLA2) but was enhanced by the addition of either of the EpOME regioisomers. In addition, treatment with a specific sEH inhibitor (AUDA) increased AcMNPV virulence against three different lepidopteran insects, presumably by increasing endogenous EpOME levels. This enhanced effect of EpOMEs on virulence was further supported by specific RNA interference (RNAi), in which RNAi specific to CYP expression decreased AcMNPV virulence while a specific RNAi against sEH expression significantly enhanced virulence. In response to AcMNPV infection, TUNEL assay results showed that S. exigua larvae exhibited apoptosis in the midgut, fat body, and epidermis. Inhibition of apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, significantly increased virulence. Similarly, the addition of AUDA to the viral treatment suppressed the gene expression of five inducible caspases and cytochrome C to suppress apoptosis, which led to a significant increase in the tissue viral titers. These results indicate that EpOMEs play a role in terminating excessive and unnecessary immune responses against viral infection during the late stage by down-regulating antiviral apoptosis in lepidopteran insects.

4.
PLoS One ; 19(2): e0290929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319944

RESUMO

Honeybees require an efficient immune system to defend against microbial pathogens. The American foulbrood pathogen, Paenibacillus larvae, is lethal to honeybees and one of the main causes of colony collapse. This study investigated the immune responses of Apis mellifera and Apis cerana honeybees against the bacterial pathogen P. larvae. Both species of honeybee larvae exhibited significant mortality even at 102 103 cfu/mL of P. larvae by diet-feeding, although A. mellifera appeared to be more tolerant to the bacterial pathogen than A. cerana. Upon bacterial infection, the two honeybee species expressed both cellular and humoral immune responses. Hemocytes of both species exhibited characteristic spreading behaviors, accompanied by cytoskeletal extension along with F-actin growth, and formed nodules. Larvae of both species also expressed an antimicrobial peptide called apolipophorin III (ApoLpIII) in response to bacterial infection. However, these immune responses were significantly suppressed by a specific inhibitor to phospholipase A2 (PLA2). Each honeybee genome encodes four PLA2 genes (PLA2A ~ PLA2D), representing four orthologous combinations between the two species. In response to P. larvae infection, both species significantly up-regulated PLA2 enzyme activities and the expression of all four PLA2 genes. To determine the roles of the four PLA2s in the immune responses, RNA interference (RNAi) was performed by injecting gene-specific double stranded RNAs (dsRNAs). All four RNAi treatments significantly suppressed the immune responses, and specific inhibition of the two secretory PLA2s (PLA2A and PLA2B) potently suppressed nodule formation and ApoLpIII expression. These results demonstrate the cellular and humoral immune responses of A. mellifera and A. cerana against P. larvae. This study suggests that eicosanoids play a crucial role in mediating common immune responses in two closely related honeybees.


Assuntos
Infecções Bacterianas , Paenibacillus larvae , Abelhas , Animais , Paenibacillus larvae/fisiologia , Larva , Dieta , Fosfolipases A2
5.
Arch Insect Biochem Physiol ; 115(1): e22081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288493

RESUMO

Phospholipase A2 (PLA2 ) catalyzes phospholipids at the sn-2 position to release free fatty acids, including arachidonic acid (AA) or its precursor. The free AA is then oxygenated into different eicosanoids, which mediate the diverse physiological processes in insects. Any inhibition of the PLA2 catalysis would give rise to serious malfunctioning in insect growth and development. An onion moth, Acrolepiopsis sapporensis, encodes four different PLA2 genes (As-PLA2 A-As-PLA2 D), in which As-PLA2 A is dominantly expressed at all developmental stages and in different larval tissues. RNA interference of the As-PLA2 A expression significantly reduced the PLA2 activity of A. sapporensis, which suffered from immunosuppression. A recombinant As-PLA2 A protein was purified from a bacterial expression system, which exhibited a typical Michaelis-Menten kinetics and hence susceptible to a specific inhibitor to sPLA2 and dithiothreitol. A total of 19 bacterial metabolites derived from Xenorhabdus and Photorhabdus were screened against the recombinant As-PLA2 A. Five potent metabolites were highly inhibitory and followed a competitive enzyme inhibition. These five inhibitors suppressed the immune responses of A. sapporensis by inhibiting hemocyte-spreading behavior and phenoloxidase activity. However, an addition of AA could significantly rescue the immunosuppression induced by the selected inhibitors. These studies suggest that the recombinant As-PLA2 A protein can be applied for high-throughput screening of insect immunosuppressive compounds.


Assuntos
Fosfolipases A2 Secretórias , Animais , Spodoptera , Fosfolipases A2 Secretórias/genética , Fosfolipases A2 Secretórias/metabolismo , Eicosanoides/metabolismo , Larva/metabolismo , Insetos , Ácido Araquidônico/metabolismo
6.
Dev Comp Immunol ; 151: 105101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000489

RESUMO

Two bacterial genera, Xenorhabdus and Photorhabdus, are mutually symbiotic to the entomopathogenic nematodes, Steinernema and Heterorhabditis, respectively. The infective juveniles deliver the symbiotic bacteria to the hemocoel of target insects, in which the bacteria proliferate and help the development of the host nematode. The successful parasitism of the nematode-bacterial complex depends on host immunosuppression by the bacteria via their secondary metabolites. Leucine-responsive regulatory protein (Lrp) is a global bacterial transcriptional factor that plays a crucial role in parasitism. However, its regulatory targets to suppress insect immunity are not clearly understood. This study investigated the bacterial genes regulated by Lrp and the subsequent production of secondary metabolites in Xenorhabdus hominickii. Lrp expression occurred at the early infection stage of the bacteria in a target insect, Spodoptera exigua. A preliminary in silico screening indicated that 3.7% genes among 4075 predicted genes encoded in X. hominickii had the Lrp-response element on their promoters, including two non-ribosomal peptide synthetases (NRPSs). Eight NRPS (NRPS1-NRPS8) genes were predicted in the bacterial genome, in which six NRPS (NRPS3-NRPS8) expressions were positively correlated with Lrp expression in the infected larvae of S. exigua. Exchange of the Lrp promoter with an inducible promoter altered the production of the secondary metabolites and the NRPS expression levels. The immunosuppressive activities of X. hominickii were dependent on the Lrp expression level. The metabolites produced by Lrp expression included the eicosanoid-biosynthesis inhibitors and hemolytic factors. A cyclic dipeptide (=cPF) was produced by the bacteria at high Lrp expression and inhibited the phospholipase A2 activity of S. exigua in a competitive inhibitory manner. These results suggest that Lrp is a global transcriptional factor of X. hominickii and plays a crucial role in insect immunosuppression by modulating NRPS expression.


Assuntos
Nematoides , Xenorhabdus , Animais , Proteína Reguladora de Resposta a Leucina/metabolismo , Xenorhabdus/genética , Nematoides/metabolismo , Peptídeo Sintases/metabolismo , Fatores de Transcrição/genética , Spodoptera , Simbiose
7.
Front Endocrinol (Lausanne) ; 14: 1190834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424852

RESUMO

Background: Eicosanoids are a group of the oxygenated C20 polyunsaturated fatty acids and play crucial roles in mediating various insect physiological processes. Catalytic activity of phospholipase A2 (PLA2) provides an initial substrate, arachidonic acid (AA), for subsequent eicosanoid biosynthesis. Results: This study identified four different secretory PLA2 (As-PLA2A-As-PLA2D) genes encoded in the Asian onion moth, Acrolepiopsis sapporensis. A phylogenetic analysis indicated that As-PLA2A and As-PLA2D are clustered with Group III PLA2s while As-PLA2B and As-PLA2C are clustered with Group XII and Group X PLA2s, respectively. Expression levels of these PLA2 genes increased along with larval development, especially in the fat body. A bacterial immune challenge upregulated the basal expression levels of the four PLA2 genes, which resulted in significant increases of the PLA2 enzyme activity. The enzyme activity was susceptible to a calcium chelator or reducing agent, suggesting Ca2+ dependency and disulfide linkage required for the catalytic activities of the secretory type of PLA2s. In addition, the PLA2 activity was also susceptible to bromophenacyl bromide (BPB), a specific inhibitor to sPLA2, but not to intracellular PLA2 inhibitors. An addition of BPB to the immune challenge significantly prevented hemocyte-spreading behavior of A. sapporensis. BPB treatment also suppressed a cellular immune response measured by hemocyte nodule formation. However, the immunosuppression was significantly rescued by the AA addition. To determine the PLA2(s) responsible for the immunity, individual RNA interference (RNAi) treatments specific to each of the four PLA2s were performed. Injection of gene-specific double-stranded RNAs caused significant reductions in the transcript level in all four PLA2s. In all four PLA2s, the RNAi treatments prevented the cellular immune response even after the immune challenge. Conclusion: This study reports four secretory PLA2s encoded in A. sapporensis and their function in mediating cellular immunity.


Assuntos
Fosfolipases A2 Secretórias , Animais , Ácido Araquidônico , Imunidade Celular , Insetos , Fosfolipases A2 Secretórias/genética , Filogenia , Spodoptera/metabolismo
8.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461499

RESUMO

Epoxyoctadecamonoenoic acids (EpOMEs) are epoxide derivatives of linoleic acid (9,12-octadecadienoic acid: LA). They are metabolized into dihydroxyoctadecamonoenoic acids (DiHOMEs) in mammals. Unlike in mammals where they act as adipokines or lipokines, EpOMEs act as immunosuppressants in insects. However, the functional link between EpOMEs and pro-immune mediators such as PGE2 is not known. In addition, the physiological significance of DiHOMEs is not clear in insects. This study analyzed the physiological role of these C18 oxylipins using a lepidopteran insect pest, Spodoptera exigua. Immune challenge of S. exigua rapidly upregulated the expression of the phospholipase A2 gene to trigger C20 oxylipin biosynthesis, followed by the upregulation of genes encoding EpOME synthase (SE51385) and a soluble epoxide hydrolase (Se-sEH). The sequential gene expression resulted in the upregulations of the corresponding gene products such as PGE2, EpOMEs, and DiHOMEs. Interestingly, only PGE2 injection without the immune challenge significantly upregulated the gene expression of SE51825 and Se-sEH. The elevated levels of EpOMEs acted as immunosuppressants by inhibiting cellular and humoral immune responses induced by the bacterial challenge, in which 12,13-EpOME was more potent than 9,10-EpOME. However, DiHOMEs did not inhibit the cellular immune responses but upregulated the expression of antimicrobial peptides selectively suppressed by EpOMEs. The negative regulation of insect immunity by EpOMEs and their inactive DiHOMEs were further validated by synthetic analogs of the linoleate epoxide and corresponding diol. Furthermore, inhibitors specific to Se-sEH used to prevent EpOME degradation significantly suppressed the immune responses. The data suggest a physiological role of C18 oxylipins in resolving insect immune response. Any immune dysregulation induced by EpOME analogs or sEH inhibitors significantly enhanced insect susceptibility to the entomopathogen, Bacillus thuringiensis.

9.
Arch Insect Biochem Physiol ; 114(2): 1-21, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459157

RESUMO

A nonmodel insect, Acrolepiopsis sapporensis, has been analyzed in immune responses. The total hemocytes in the fifth instar larvae were 2.33 × 106 cells/mL. These hemocytes comprised at least five different types and different relative ratios: 47% granulocytes, 26% plasmatocytes, 11% oenocytoid, 8% prohemocytes, and 5% spherulocytes. Upon bacterial challenge, some of the hemocytes exhibited typical hemocyte-spreading behaviors, such as focal adhesion, and filopodial and lamellipodial cytoplasmic extensions. The hemocyte behaviors induced cellular immune responses demonstrated by nodule formation. In addition, the plasma collected from the immune-challenged larvae exhibited humoral immune responses by bacterial growth inhibition along with enhanced phenoloxidase enzyme activity. These cellular and humoral immune responses were further analyzed by determining the immune-associated genes from a transcriptome generated by RNA-Seq. A total of about 12 Gb sequences led to about 218,116 contigs, which were predicted to encode about 46,808 genes. Comparative expression analysis showed 8392 uniquely expressed genes in the immune-challenged larvae. Differentially expressed gene (DEG) analysis among the commonly expressed genes indicated that 782 genes were upregulated and 548 genes were downregulated in the expressions after bacterial challenge. These immune-associated genes included pattern recognition receptors, immune mediation/signaling genes, and various immune effectors. Specifically, the genetic components of the Toll, IMD, and JAK/STAT immune signaling pathways were included in the DEG database. These results demonstrate the immune responses of A. sapporensis larvae and suggest the genes associated with the immune responses in this nonmodel insect.


Assuntos
Mariposas , Animais , Mariposas/genética , Cebolas/genética , RNA-Seq , Larva , Imunidade/genética , Hemócitos
10.
J Pain Res ; 16: 1755-1765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273271

RESUMO

Purpose: Postherpetic neuralgia (PHN) is the most common chronic complication of herpes zoster, associated with poor quality of life and increased patient and healthcare resource expenditure. This randomized controlled trial aims to evaluate the efficacy and safety of SIKD1977 (Sogeonjungtang) in combination with standard treatment and estimate an effective dose for treating PHN. Patients and Methods: This is a protocol for a randomized, placebo-controlled, double-blind, multicenter trial. A total of 90 eligible participants with PHN will be recruited from three hospitals and randomly allocated to high-dose group, low-dose group, or placebo group in a 1:1:1 ratio. The trial will involve a 6-week oral administration of SIKD1977/placebo, and a 1-week follow-up period. The primary outcome will be the weekly average change in average daily pain score (ADPS) from baseline to the end of treatment. The secondary outcomes will include the weekly average changes in ADPS from baseline to week 2, 4, and 7, differences in Short-Form McGill Pain Questionnaire, Visual analogue scale, 5-level EuroQol-5 dimensions, Patient Global Impression of Change, and consumption of rescue drugs. All adverse events will be assessed during the trial. Conclusion: This study will provide evidence for the efficacy and safety of SIKD1977, and an effective dose for PHN. Trial Registration: This protocol has been registered in the Clinical Research Information Service with the identification code KCT0007939.

11.
Insect Mol Biol ; 32(5): 484-509, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37158315

RESUMO

Chorion-i.e., the eggshell-is formed during the late stage of oogenesis by follicular epithelium in the ovary. Although the endocrine signal(s) driving choriogenesis remain unclear in mosquitoes, this process in other insects has been suspected to involve the mediation of prostaglandins (PGs). This study tested the role of PG in the choriogenesis of the Asian tiger mosquito, Aedes albopictus, and its influence on controlling the expressions of genes associated with chorion formation by a transcriptome analysis. An immunofluorescence assay showed that PGE2 is localised in follicular epithelium. With the treatment of aspirin, an inhibitor of PG biosynthesis, at mid oogenesis, the PGE2 signal disappeared in the follicular epithelium led to significantly inhibited chorion formation along with a malformed eggshell. Ovary transcriptomes were assessed by RNASeq at the mid and late ovarian developmental stages. Differentially expressed genes (DEGs) exhibiting more than twofold changes in expression levels included 297 genes at mid stage and 500 genes at late stage. These DEGs at these two developmental stages commonly included genes associated with egg and chorion proteins of Ae. albopictus. Most chorion-associated genes were clustered in the 168 Mb region on a chromosome and exhibited significantly induced expressions at both ovarian developmental stages. The inhibition of PG biosynthesis significantly suppressed the expression of the chorion-associated genes while the addition of PGE2 rescued the gene expressions and led to recovery of choriogenesis. These results suggest that PGE2 mediates the choriogenesis of Ae. albopictus.


Assuntos
Aedes , Feminino , Animais , Aedes/metabolismo , Oogênese , Ovário , Prostaglandinas/metabolismo , Córion , Mosquitos Vetores
12.
BMC Biotechnol ; 23(1): 10, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016358

RESUMO

BACKGROUND: The western flower thrips Frankliniella occidentalis is an insect pest that damages various crops, including hot peppers. It is a vector of a plant pathogen, tomato spotted wilt virus. To control this pest, chemical insecticides have been used in the past, but the control efficacy is unsatisfactory owing to rapid resistance development by F. occidentalis. METHODOLOGY: This study reports a novel control technology against this insect pest using RNA interference (RNAi) of the vacuolar-type ATPase (vATPase) expression. Eight subunit genes (vATPase-A ∼ vATPase-H) of vATPase were obtained from the F. occidentalis genome and confirmed for their expressions at all developmental stages. RESULTS: Double-stranded RNAs (dsRNAs) specific to the eight subunit genes were fed to larvae and adults, which significantly suppressed the corresponding gene expressions after 24-h feeding treatment. These RNAi treatments resulted in significant mortalities, in which the dsRNA treatments at ∼2,000 ppm specific to vATPase-A or vATPase-B allowed complete control efficacy near 100% mortality in 7 days after treatment. To prevent dsRNA degradation by the digestive proteases during oral feeding, dsRNAs were formulated in a liposome and led to an enhanced mortality of the larvae and adults of F. occidentalis. The dsRNAs were then sprayed at 2,000 ppm on F. occidentalis infesting hot peppers in a greenhouse, which resulted in 53.5-55.9% control efficacy in 7 days after treatment. Even though the vATPases are conserved in different organisms, the dsRNA treatment was relatively safe for non-target insects owing to the presence of mismatch sequences compared to the dsRNA region of F. occidentalis. CONCLUSION: These results demonstrate the practical feasibility of spraying dsRNA to control F. occidentalis infesting crops.


Assuntos
Capsicum , Tisanópteros , Animais , Tisanópteros/genética , Capsicum/genética , Insetos/genética , RNA de Cadeia Dupla/genética , Larva , Flores , Produtos Agrícolas/genética
13.
Dev Comp Immunol ; 144: 104706, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37019348

RESUMO

Tomato spotted wilt virus (TSWV) causes a serious plant disease and is transmitted by specific thrips including the western flower thrips, Frankliniella occidentalis. The persistent and circulative virus transmission suggests an induction of immune defenses in the thrips. We investigated the immune responses of F. occidentalis to TSWV infection. Immunofluorescence assay demonstrated viral infection in the larval midguts at early stage and subsequent propagation to the salivary gland in adults. In the larval midgut, TSWV infection led to the release of DSP1, a damage-associated molecular pattern, from the gut epithelium into the hemolymph. DSP1 up-regulated PLA2 activity, which would lead to biosynthesis of eicosanoids that activate cellular and humoral immune responses. Phenoloxidase (PO) activity was enhanced following induction of PO and its activating protease gene expressions. Antimicrobial peptide genes and dual oxidase, which produces reactive oxygen species, were induced by the viral infection. Expression of four caspase genes increased and TUNEL assay confirmed apoptosis in the larval midgut after the virus infection. These immune responses to viral infection were significantly suppressed by the inhibition of DSP1 release. We infer that TSWV infection induces F. occidentalis immune responses, which are activated by the release of DSP1 from the infection foci within midguts.


Assuntos
Tisanópteros , Tospovirus , Animais , Tisanópteros/genética , Tisanópteros/metabolismo , Tospovirus/genética , Tospovirus/metabolismo , Larva , Flores , Doenças das Plantas
14.
Sci Rep ; 13(1): 5551, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019976

RESUMO

The western flower thrips, Frankliniella occidentalis, is an insect pest, and its aggregation pheromone (AP) plays a crucial role in the recruitment of both sexes. A novel pheromone biosynthesis-activating neuropeptide (PBAN)-like gene is encoded in F. occidentalis genome, but its physiological function has yet to be elucidated. This study hypothesized the physiological role played by PBAN in mediating AP production. AP has been known to be produced only by male adults in F. occidentalis. Surprisingly, our extraction of headspace volatiles contained two AP components in females as well as in males with similar composition. PBAN injection elevated the AP production whereas RNA interference (RNAi) of the gene expression suppressed the AP production in both sexes. A biosynthetic pathway to produce AP components were predicted and the enzymes catalyzing the main steps were confirmed in their expressions. Individual RNAi treatments of these genes significantly suppressed AP production. RNAi of PBAN gene downregulated the expressions of these biosynthesis-associated genes in both sexes. These results suggest that the novel neuropeptide acts as PBAN mediating AP production through stimulating its biosynthetic machinery in F. occidentalis.


Assuntos
Mariposas , Neuropeptídeos , Atrativos Sexuais , Masculino , Feminino , Animais , Feromônios/metabolismo , Neuropeptídeos/metabolismo , Interferência de RNA , Mariposas/fisiologia , Atrativos Sexuais/metabolismo
15.
Front Microbiol ; 14: 1035669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876096

RESUMO

Polydnaviruses (PDVs) exhibit species-specific mutualistic relationships with endoparasitoid wasps. PDVs can be categorized into bracoviruses and ichnoviruses, which have independent evolutionary origins. In our previous study, we identified an ichnovirus of the endoparasitoid Diadegma fenestrale and named it DfIV. Here, DfIV virions from the ovarian calyx of gravid female wasps were characterized. DfIV virion particles were ellipsoidal (246.5 nm × 109.0 nm) with a double-layered envelope. Next-generation sequencing of the DfIV genome revealed 62 non-overlapping circular DNA segments (A1-A5, B1-B9, C1-C15, D1-D23, E1-E7, and F1-F3); the aggregate genome size was approximately 240 kb, and the GC content (43%) was similar to that of other IVs (41%-43%). A total of 123 open reading frames were predicted and included typical IV gene families such as repeat element protein (41 members), cysteine motif (10 members), vankyrin (9 members), polar residue-rich protein (7 members), vinnexin (6 members), and N gene (3 members). Neuromodulin N (2 members) was found to be unique to DfIV, along with 45 hypothetical genes. Among the 62 segments, 54 showed high (76%-98%) sequence similarities to the genome of Diadegma semiclausum ichnovirus (DsIV). Three segments, namely, D22, E3, and F2, contained lepidopteran host genome integration motifs with homologous regions of about 36-46 bp between them (Diadegma fenestrale ichnovirus, DfIV and lepidopteran host, Plutella xylostella). Most of the DfIV genes were expressed in the hymenopteran host and some in the lepidopteran host (P. xylostella), parasitized by D. fenestrale. Five segments (A4, C3, C15, D5, and E4) were differentially expressed at different developmental stages of the parasitized P. xylostella, and two segments (C15 and D14) were highly expressed in the ovaries of D. fenestrale. Comparative analysis between DfIV and DsIV revealed that the genomes differed in the number of segments, composition of sequences, and internal sequence homologies.

16.
J Microbiol Biotechnol ; 33(6): 745-752, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36994621

RESUMO

Gut symbionts play crucial roles in host development by producing nutrients and defending against pathogens. Phloem-feeding insects in particular lack essential nutrients in their diets, and thus, gut symbionts are required for their development. Gram-negative Pantoea spp. are known to be symbiotic to the western flower thrips (Frankliniella occidentalis). However, their bacterial characteristics have not been thoroughly investigated. In this study, we isolated three different bacteria (BFoK1, BFiK1, and BTtK1) from F. occidentalis, F. intonsa, and T. tabaci. The bacterial isolates of all three species contained Pantoea spp. Their 16S rRNA sequences indicated that BFoK1 and BTtK1 were similar to P. agglomerans, while BFiK1 was similar to P. dispersa. These predictions were supported by the biochemical characteristics assessed by fatty acid composition and organic carbon utilization. In the bacterial morphological analysis, BFoK1 and BTtK1 were distinct from BFiK1. All these bacteria were relatively resistant to tetracycline compared to ampicillin and kanamycin, in which BFoK1 and BTtK1 were different from BFiK1. Feeding ampicillin (100,000 ppm) reduced the bacterial density in thrips and retarded the development of F. occidentalis. The addition of BFoK1 bacteria, however, rescued the retarded development. These findings indicate that Pantoea bacteria are symbionts to different species of thrips.


Assuntos
Pantoea , Tisanópteros , Animais , Tisanópteros/genética , Tisanópteros/microbiologia , Pantoea/genética , RNA Ribossômico 16S/genética , Insetos/microbiologia , República da Coreia
17.
Cells ; 12(4)2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36831266

RESUMO

Insect immunity is assorted into humoral and cellular immune reactions. Humoral reactions involve the regulated production of anti-microbial peptides, which directly kill microbial invaders at the membrane and intracellular levels. In cellular immune reactions, millions of hemocytes are mobilized to sites of infection and replaced by hematopoiesis at a high biological cost after the immune defense. Here, we considered that the high biological costs of maintaining and replacing hemocytes would be a better investment if hemocytes carried out meaningful biological actions unrelated to cellular immunity. This idea allows us to treat a set of 10 hemocyte actions that are not directly involved in immunity, some of which, so far, are known only in Drosophila melanogaster. These include (1) their actions in molting and development, (2) in surviving severe hypoxia, (3) producing phenoloxidase precursor and its actions beyond immunity, (4) producing vitellogenin in a leafhopper, (5) recognition and responses to cancer in Drosophila, (6) non-immune actions in Drosophila, (7) clearing apoptotic cells during development of the central nervous system, (8) developing hematopoietic niches in Drosophila, (9) synthesis and transport of a lipoprotein, and (10) hemocyte roles in iron transport. We propose that the biological significance of hemocytes extends considerably beyond immunity.


Assuntos
Drosophila melanogaster , Hemócitos , Animais , Insetos , Drosophila , Imunidade Celular
18.
Insects ; 14(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36835723

RESUMO

Tomato spotted wilt virus (TSWV) is a plant virus that causes massive economic damage to high-valued crops. This virus is transmitted by specific thrips, including the western flower thrips, Frankliniella occidentalis. TSWV is acquired by the young larvae during feeding on infected host plants. TSWV infects the gut epithelium through hypothetical receptor(s) and multiplies within the cells for subsequent horizontal transmission to other plant hosts via the salivary glands during feeding. Two alimentary canal proteins, glycoprotein (Fo-GN) and cyclophilin (Fo-Cyp1), are thought to be associated with the TSWV entry into the gut epithelium of F. occidentalis. Fo-GN possesses a chitin-binding domain, and its transcript was localized on the larval gut epithelium by fluorescence in situ hybridization (FISH) analysis. Phylogenetic analysis indicated that F. occidentalis encodes six cyclophilins, in which Fo-Cyp1 is closely related to a human cyclophilin A, an immune modulator. The Fo-Cyp1 transcript was also detected in the larval gut epithelium. Expression of these two genes was suppressed by feeding their cognate RNA interference (RNAi) to young larvae. The RNAi efficiencies were confirmed by the disappearance of the target gene transcripts from the gut epithelium by FISH analyses. The RNAi treatments directed to Fo-GN or Fo-Cyp1 prevented the typical TSWV titer increase after the virus feeding, compared to control RNAi treatment. Our immunofluorescence assay using a specific antibody to TSWV documented the reduction of TSWV in the larval gut and adult salivary gland after the RNAi treatments. These results support our hypothesis that the candidate proteins Fo-GN and Fo-Cyp1 act in TSWV entry and multiplication in F. occidentalis.

19.
PLoS One ; 18(2): e0279646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827422

RESUMO

Since the first report in 1993 in Korea, the western flower thrips, Frankliniella occidentalis, has been found in various crops throughout the country. Although more than 20 different chemical insecticides are registered to control this insect pest, its outbreaks seriously damage crop yields, especially in greenhouses. This study developed a non-chemical technique to control F. occidentalis infesting hot peppers cultivated in greenhouses. The method was based on behavioral control using an alarm pheromone ("Push") to prevent the entry of the thrips into greenhouses and an aggregation pheromone ("Pull") for mass trapping inside the greenhouses. The greenhouse fences were treated with a wax formulation of the alarm pheromone and a yellow CAN trap covered with sticky material containing the aggregation pheromone was constructed and deployed inside the greenhouses. Field assay demonstrated the efficacy of the push-pull tactics by reducing thrips density in flowers of the hot peppers as well as in the monitoring traps. Especially, the enhanced mass trapping to the CAN trap compared to the conventional yellow sticky trap led to significant reduction in the thrips population. This novel push-pull technique would be applicable to effectively control F. occidentalis in field conditions.


Assuntos
Inseticidas , Tisanópteros , Animais , Feromônios , Insetos , Flores
20.
Insects ; 14(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36661977

RESUMO

Insulin-like peptides (ILPs) mediate various physiological processes in insects. Specifically, ILP expression is required for immature development in different insects. The western flower thrips, Frankliniella occidentalis, is polyphagous, but its occurrence and population density vary among different hosts. This study assesses the developmental variations in the thrips through quantitative analysis of their ILP expressions. Two types of ILPs (Fo-ILP1 and Fo-ILP2) were identified from the genome of F. occidentalis, and both ILPs were predicted to have the characteristics of signal peptides and B-C-A chains linked by cysteines. A phylogenetic analysis indicates that these two ILPs in the thrips are clustered with the ILP1 of Drosophila melanogaster, suggesting their physiological roles in growth. In addition, the two ILP genes were relatively highly expressed at all feeding stages, but their expression was reduced during the nonfeeding prepupal and pupal stages. Furthermore, RNA interference of each ILP expression led to significant developmental retardation. In validating the ILP expression in the thrips' development, five different varieties of host hot peppers were assessed in a choice test, along with the immature development of F. occidentalis. The expression levels of the two ILP genes were highly correlated with variations in the immature developmental rates of different hot pepper varieties. These suggest that Fo-ILP1 and Fo-ILP2 mediate the immature development of F. occidentalis by sensing different nutritional values of hot peppers. This study is the first report on ILPs in thysanopteran insects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...